
New IK Plugin API
for Constraint-Based Solvers

● Design flaws
● Improve support for:

● Kinematic Trees
● Redundancy Resolution
● Tolerances

● Hierarchy of Tasks

2.11.2019 MoveIt Workshop 2019 Macau 2

Applications of IK
● Find all solutions for given eef pose(s)

to serve as goal configs

● Compute closest solution to seed
to get a smooth trajectory
obeying Cartesian constraints

2.11.2019 MoveIt Workshop 2019 Macau 3

Applications of IK
● Find all solutions for given eef pose(s)

to serve as goal configs

● Compute closest solution to seed
to get a smooth trajectory
obeying Cartesian constraints

Both are not well supported by current API

2.11.2019 MoveIt Workshop 2019 Macau 4

IK approaches

IK solvers

global local

deterministic
gradient-based Jacobian

randomized

KDLQP

TracIK

algebraic geometric

ikfast

genetic particle
swarm

2.11.2019 MoveIt Workshop 2019 Macau 5

IK approaches

IK solvers

global local

deterministic
gradient-based Jacobian

randomized

+ Enumerating all solutions

−Hard to pick a good one

+ Converging to close by
solution

−Get stuck in saddles /
singularities

2.11.2019 MoveIt Workshop 2019 Macau 6

Current IK-plugin API
● getPositionIK(pose, seed_state, solution)

– Find (single) solution, closest to seed state for (single) eef
– only used in ompl_interface::PoseModelStateSpace

2.11.2019 MoveIt Workshop 2019 Macau 7

Current IK-plugin API
● getPositionIK(pose, seed_state, solution)

– Find (single) solution, closest to seed state for (single) eef
– only used in ompl_interface::PoseModelStateSpace

● searchPositionIK(pose, seed_state, timeout, solution)
– Same as before, but allow random re-seeding
– Can return essentially any solution

2.11.2019 MoveIt Workshop 2019 Macau 8

Current IK-plugin API
● getPositionIK(pose, seed_state, solution)

– Find (single) solution, closest to seed state for (single) eef
– only used in ompl_interface::PoseModelStateSpace

● searchPositionIK(pose, seed_state, timeout, solution)
– Same as before, but allow random re-seeding
– Can return essentially any solution
– Variants:

● consistency_limits: allowed per-joint deviations from seed
● solution_callback: validate solutions
● most generic variant wrapped in RobotState::setFromIK()

2.11.2019 MoveIt Workshop 2019 Macau 9

Current IK-plugin API
● getPositionIK(pose, seed_state, solution)

– Find (single) solution, closest to seed state for (single) eef
– only used in ompl_interface::PoseModelStateSpace

● searchPositionIK(pose, seed_state, timeout, solution)
– Same as before, but allow random re-seeding
– Can return essentially any solution
– Variants:

● consistency_limits: allowed per-joint deviations from seed
● solution_callback: validate solutions
● most generic variant wrapped in RobotState::setFromIK()

Simplify: Only keep most generic variant!

2.11.2019 MoveIt Workshop 2019 Macau 10

Consistency Limits
● Choosing a proper consistency limit is impossible!
● Moving through singularities results in strong

changes in joint space

2.11.2019 MoveIt Workshop 2019 Macau 11

How can we do better?
● Validate interpolation pose between joint configs

2.11.2019 MoveIt Workshop 2019 Macau 12

How can we do better?
● Validate interpolation pose between joint configs
➔ eef shouldn‘t move much

2.11.2019 MoveIt Workshop 2019 Macau 13

How can we do better?
● Validate interpolation pose between joint configs
➔ eef shouldn‘t move much
➔ Provide utility function in base class

to measure „distance“ between configurations

2.11.2019 MoveIt Workshop 2019 Macau 14

Current API: Support for Kinematic Trees?
● Compute common solution to place multiple tips
● searchPositionIK(poses vector, seed_state, solution)
● getPositionIK(poses vector, seed_state, solutions)

2.11.2019 MoveIt Workshop 2019 Macau 15

Current API: Support for Kinematic Trees?
● Compute common solution to place multiple tips
● searchPositionIK(poses vector, seed_state, solution)
● getPositionIK(poses vector, seed_state, solutions)

– ambiguity mentioned in src comments:
● return (multiple?) common solution(s)

for given eef poses
● return a solution

for each pose
(of a single eef)

● introduced in Feb 2015 by ROS-I
to get multiple solutions, but:

2.11.2019 MoveIt Workshop 2019 Macau 16

Current API: Support for Kinematic Trees?
● Compute common solution to place multiple tips
● searchPositionIK(poses vector, seed_state, solution)
● getPositionIK(poses vector, seed_state, solutions)

– ambiguity mentioned in src comments:
● return (multiple?) common solution(s)

for given eef poses
● return a solution

for each pose
(of a single eef)

● introduced in Feb 2015 by ROS-I
to get multiple solutions, but:

Not required!
Call IK repeatedly.
Not required!
Call IK repeatedly.

2.11.2019 MoveIt Workshop 2019 Macau 17

Current API: Support for Kinematic Trees?
● Compute common solution to place multiple tips
● searchPositionIK(poses vector, seed_state, solution)
● getPositionIK(poses vector, seed_state, solutions)

– ambiguity mentioned in src comments:
● return (multiple?) common solution(s)

for given eef poses
● return a solution

for each pose
(of a single eef)

● introduced in Feb 2015 by ROS-I
to get multiple solutions, but:

– method not used in MoveIt code base!

Not required!
Call IK repeatedly.
Not required!
Call IK repeatedly.

2.11.2019 MoveIt Workshop 2019 Macau 18

Current API: Support for Kinematic Trees?
● Compute common solution to place multiple tips
● searchPositionIK(poses vector, seed_state, solution)
● getPositionIK(poses vector, seed_state, solutions)

– ambiguity mentioned in src comments:
● return (multiple?) common solution(s)

for given eef poses
● return a solution

for each pose
(of a single eef)

● introduced in Feb 2015 by ROS-I
to get multiple solutions, but:

– method not used in MoveIt code base!

Not required!
Call IK repeatedly.
Not required!
Call IK repeatedly.

Unify: Provide similar APIs for both functions!

2.11.2019 MoveIt Workshop 2019 Macau 19

Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

– Enumerate them all?

2.11.2019 MoveIt Workshop 2019 Macau 20

Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

– Enumerate them all?
– Interpolating between solutions of different branches

results in large joint-space motions
– Usually we want to stay within a single solution branch

during planning (to avoid these large-scale motions)

2.11.2019 MoveIt Workshop 2019 Macau 21

Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

– Enumerate them all?
– Interpolating between solutions of different branches

results in large joint-space motions
– Usually we want to stay within a single solution branch

during planning (to avoid these large-scale motions)

Do we really need to find all solutions?

2.11.2019 MoveIt Workshop 2019 Macau 22

Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

● Redundant robots (#joints > 6)
additionally exhibit continuous
solution manifolds
– Finding all solutions not possible
– Requires discretization

2.11.2019 MoveIt Workshop 2019 Macau 23

Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

● Redundant robots (#joints > 6)
additionally exhibit continuous
solution manifolds
– Finding all solutions not possible
– Requires discretization

● getPositionIK() introduced by ROS-I,
but not actually used

2.11.2019 MoveIt Workshop 2019 Macau 24

Redundancy Resolution
● No mechanism provided to resolve redundancies
● Possible Criteria:

– Keep joints close to a „preferred“ pose / avoid limits
– Minimize joint velocities = Jacobian Pseudoinverse
– Minimize kinetic energy
– Maximize manipulability
– Minimize joint torques / effort
– Avoid obstacles, reaching around obstacles
– Avoid singularities

2.11.2019 MoveIt Workshop 2019 Macau 25

Redundancy Resolution: Joint Weighting
● Criteria usually compute a scalar cost function

that is minimized
● Weighting joint contributions

can yield different behaviour
● Example: Joint Velocities

● Provide YAML params for
generic distance measure?

2.11.2019 MoveIt Workshop 2019 Macau 26

KinematicsQueryOptions: further arguments
● discretization_method, setRedundantJoints()

– only relevant for specific IK solvers (e.g. ikfast)
➔ move to kinematics.yaml

● search_resolution (per redundant joint)

2.11.2019 MoveIt Workshop 2019 Macau 27

KinematicsQueryOptions: further arguments
● discretization_method, setRedundantJoints()

– only relevant for specific IK solvers (e.g. ikfast)
➔ move to kinematics.yaml

● search_resolution (per redundant joint)
● lock_redundant_joints

– discretization_method = NO_DISCRETIZATION?
– not used (anymore)

2.11.2019 MoveIt Workshop 2019 Macau 28

KinematicsQueryOptions: further arguments
● discretization_method, setRedundantJoints()

– only relevant for specific IK solvers (e.g. ikfast)
➔ move to kinematics.yaml

● search_resolution (per redundant joint)
● lock_redundant_joints

– discretization_method = NO_DISCRETIZATION?
– not used (anymore)

● return_approximate_solution
– used in KDL-based plugins
– returns any not-converged solution
➔ not useful: better introduce explicit tolerances

2.11.2019 MoveIt Workshop 2019 Macau 29

Explicit Tolerances
● Allow tolerances for all Cartesian directions individually
● Creates additional DoFs in tolerance region
● Facilitates / enables IK for underactuated robots
● Example Grasping

– position tolerance
– orientation tolerance
– infinite tolerance range

disables Cartesian axis
– w.r.t. a specific frame

● Use Constraint messages?

http://docs.ros.org/melodic/api/moveit_msgs/html/msg/Constraints.html

2.11.2019 MoveIt Workshop 2019 Macau 30

moveit_msgs/Constraints
string name

JointConstraint[] joint_constraints

PositionConstraint[] position_constraints

std_msgs/Header header

string link_name

geometry_msgs/Vector3 target_point_offset

moveit_msgs/BoundingVolume constraint_region

float64 weight

OrientationConstraint[] orientation_constraints

VisibilityConstraint[] visibility_constraints

2.11.2019 MoveIt Workshop 2019 Macau 31

Prioritizing Goal Constraints
● Constraint messages allow weighting of tasks

● When tasks are conflicting, all fail reaching their goals

2.11.2019 MoveIt Workshop 2019 Macau 32

Prioritizing Goal Constraints
● Constraint messages allow weighting of tasks

● When tasks are conflicting, all fail reaching their goals

● Better: Stack-of-Tasks Approach
– order tasks by priority
– optimize subordinate tasks

in nullspace of more important ones
– can be mixed with task weighting

to merge tasks on same priority level

2.11.2019 MoveIt Workshop 2019 Macau 33

Prioritizing Goal Constraints
● Constraint messages allow weighting of tasks

● When tasks are conflicting, all fail reaching their goals

● Better: Stack-of-Tasks Approach
– order tasks by priority
– optimize subordinate tasks

in nullspace of more important ones
– can be mixed with task weighting

to merge tasks on same priority level

● How could we extend Constraints messages?

2.11.2019 MoveIt Workshop 2019 Macau 34

Relative Position Control
● Control left w.r.t. right hand
● Realized by simple

Jacobian arithmetics

● Nullspace control:
preferred pose

2.11.2019 MoveIt Workshop 2019 Macau 35

Summary
● Simplify, unify and clarify IK plugin API

– getClosestIK(const std::map<string, Constraints>& goals,
 const std::vector<double>& seed_state,
 std::vector<double>& solution,
 KinematicsQueryOptions& options)

– getMultipleIK(const std::map<string, Constraints>& goals,
 const std::vector<double>& seed_state,
 std::list<std::vector<double>>& solutions,
 KinematicsQueryOptions& options)

● Provide corresponding wrappers in RobotState
● Provide generic distance measures

– Interpolate joint-space configs, measure Cartesian distance

– Weighted distance from preferred joint-space config

2.11.2019 MoveIt Workshop 2019 Macau 36

Handling the Migration Process
● New, independent base class
● Provide generic, thin wrapper for existing IK plugins
● Failure on new constraint-based tasks

that do not map to old IK API

	Slide 1
	page2 (1)
	page2 (2)
	page3 (1)
	page3 (2)
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	Slide 10
	page6 (1)
	page6 (2)
	page6 (3)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page8 (1)
	page8 (2)
	page8 (3)
	page9 (1)
	page9 (2)
	Slide 24
	Slide 25
	page12 (1)
	page12 (2)
	page12 (3)
	Slide 29
	Slide 30
	page15 (1)
	page15 (2)
	page15 (3)
	Slide 34
	Slide 35
	Slide 36

