
New IK Plugin API 
for Constraint-Based Solvers

● Design flaws
● Improve support for:

● Kinematic Trees
● Redundancy Resolution
● Tolerances

● Hierarchy of Tasks
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Applications of IK
● Find all solutions for given eef pose(s)

to serve as goal configs

● Compute closest solution to seed
to get a smooth trajectory 
obeying Cartesian constraints
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Applications of IK
● Find all solutions for given eef pose(s)

to serve as goal configs

● Compute closest solution to seed
to get a smooth trajectory 
obeying Cartesian constraints

Both are not well supported by current API
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IK approaches

IK solvers

global local

deterministic
gradient-based Jacobian

randomized

KDLQP

TracIK

algebraic geometric

ikfast

genetic particle
swarm
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IK approaches

IK solvers

global local

deterministic
gradient-based Jacobian

randomized

+ Enumerating all solutions

−Hard to pick a good one

+ Converging to close by 
solution

−Get stuck in saddles /
singularities
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Current IK-plugin API
● getPositionIK(pose, seed_state, solution)

– Find (single) solution, closest to seed state for (single) eef
– only used in ompl_interface::PoseModelStateSpace
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Current IK-plugin API
● getPositionIK(pose, seed_state, solution)

– Find (single) solution, closest to seed state for (single) eef
– only used in ompl_interface::PoseModelStateSpace

● searchPositionIK(pose, seed_state, timeout, solution)
– Same as before, but allow random re-seeding
– Can return essentially any solution
– Variants:

● consistency_limits: allowed per-joint deviations from seed
● solution_callback: validate solutions
● most generic variant wrapped in RobotState::setFromIK()

Simplify: Only keep most generic variant!
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Consistency Limits
● Choosing a proper consistency limit is impossible!
● Moving through singularities results in strong

changes in joint space



2.11.2019 MoveIt Workshop 2019 Macau 11

How can we do better?
● Validate interpolation pose between joint configs
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How can we do better?
● Validate interpolation pose between joint configs
➔ eef shouldn‘t move much
➔ Provide utility function in base class

to measure „distance“ between configurations
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Current API: Support for Kinematic Trees?
● Compute common solution to place multiple tips
● searchPositionIK(poses vector, seed_state, solution)
● getPositionIK(poses vector, seed_state, solutions)
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Current API: Support for Kinematic Trees?
● Compute common solution to place multiple tips
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– ambiguity mentioned in src comments:
● return (multiple?) common solution(s)

for given eef poses
● return a solution 

for each pose
(of a single eef)

● introduced in Feb 2015 by ROS-I
to get multiple solutions, but:
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Current API: Support for Kinematic Trees?
● Compute common solution to place multiple tips
● searchPositionIK(poses vector, seed_state, solution)
● getPositionIK(poses vector, seed_state, solutions)

– ambiguity mentioned in src comments:
● return (multiple?) common solution(s)

for given eef poses
● return a solution 

for each pose
(of a single eef)

● introduced in Feb 2015 by ROS-I
to get multiple solutions, but:

– method not used in MoveIt code base!

Not required!
Call IK repeatedly.
Not required!
Call IK repeatedly.

Unify: Provide similar APIs for both functions!
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Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

– Enumerate them all?
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Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

– Enumerate them all?
– Interpolating between solutions of different branches

results in large joint-space motions
– Usually we want to stay within a single solution branch

during planning (to avoid these large-scale motions)
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Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

– Enumerate them all?
– Interpolating between solutions of different branches

results in large joint-space motions
– Usually we want to stay within a single solution branch

during planning (to avoid these large-scale motions)

Do we really need to find all solutions?
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Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

● Redundant robots (#joints > 6)
additionally exhibit continuous 
solution manifolds
– Finding all solutions not possible
– Requires discretization
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Supporting Redundancies
● 6-DoF robots have discrete set of redundant solutions

● Redundant robots (#joints > 6)
additionally exhibit continuous 
solution manifolds
– Finding all solutions not possible
– Requires discretization

● getPositionIK() introduced by ROS-I,
but not actually used
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Redundancy Resolution
● No mechanism provided to resolve redundancies
● Possible Criteria:

– Keep joints close to a „preferred“ pose / avoid limits
– Minimize joint velocities = Jacobian Pseudoinverse
– Minimize kinetic energy
– Maximize manipulability
– Minimize joint torques / effort
– Avoid obstacles, reaching around obstacles
– Avoid singularities
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Redundancy Resolution: Joint Weighting
● Criteria usually compute a scalar cost function

that is minimized
● Weighting joint contributions

can yield different behaviour
● Example: Joint Velocities

● Provide YAML params for
generic distance measure?
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KinematicsQueryOptions: further arguments
● discretization_method, setRedundantJoints()

– only relevant for specific IK solvers (e.g. ikfast)
➔ move to kinematics.yaml

● search_resolution (per redundant joint)
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KinematicsQueryOptions: further arguments
● discretization_method, setRedundantJoints()

– only relevant for specific IK solvers (e.g. ikfast)
➔ move to kinematics.yaml

● search_resolution (per redundant joint)
● lock_redundant_joints

– discretization_method = NO_DISCRETIZATION?
– not used (anymore)

● return_approximate_solution
– used in KDL-based plugins
– returns any not-converged solution
➔ not useful: better introduce explicit tolerances
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Explicit Tolerances
● Allow tolerances for all Cartesian directions individually
● Creates additional DoFs in tolerance region
● Facilitates / enables IK for underactuated robots
● Example Grasping

– position tolerance
– orientation tolerance
– infinite tolerance range

disables Cartesian axis
– w.r.t. a specific frame

● Use Constraint messages?

http://docs.ros.org/melodic/api/moveit_msgs/html/msg/Constraints.html
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moveit_msgs/Constraints
string name

JointConstraint[] joint_constraints

PositionConstraint[] position_constraints

std_msgs/Header header

string link_name

geometry_msgs/Vector3 target_point_offset

moveit_msgs/BoundingVolume constraint_region

float64 weight

OrientationConstraint[] orientation_constraints

VisibilityConstraint[] visibility_constraints
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Prioritizing Goal Constraints
● Constraint messages allow weighting of tasks

● When tasks are conflicting, all fail reaching their goals
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Prioritizing Goal Constraints
● Constraint messages allow weighting of tasks

● When tasks are conflicting, all fail reaching their goals

● Better: Stack-of-Tasks Approach
– order tasks by priority
– optimize subordinate tasks 

in nullspace of more important ones
– can be mixed with task weighting

to merge tasks on same priority level
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Prioritizing Goal Constraints
● Constraint messages allow weighting of tasks

● When tasks are conflicting, all fail reaching their goals

● Better: Stack-of-Tasks Approach
– order tasks by priority
– optimize subordinate tasks 

in nullspace of more important ones
– can be mixed with task weighting

to merge tasks on same priority level

● How could we extend Constraints messages?
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Relative Position Control
● Control left w.r.t. right hand
● Realized by simple 

Jacobian arithmetics

● Nullspace control:
preferred pose
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Summary
● Simplify, unify and clarify IK plugin API

– getClosestIK(const std::map<string, Constraints>& goals, 
          const std::vector<double>& seed_state,
          std::vector<double>& solution,
          KinematicsQueryOptions& options)

– getMultipleIK(const std::map<string, Constraints>& goals, 
          const std::vector<double>& seed_state,
          std::list<std::vector<double>>& solutions,
          KinematicsQueryOptions& options)

● Provide corresponding wrappers in RobotState
● Provide generic distance measures

– Interpolate joint-space configs, measure Cartesian distance

– Weighted distance from preferred joint-space config
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Handling the Migration Process
● New, independent base class
● Provide generic, thin wrapper for existing IK plugins
● Failure on new constraint-based tasks

that do not map to old IK API
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