
MoveIt! Task Constructor
A framework for planning task sequences

Robert Haschke1, Michael Görner2

1 Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Germany
2 TAMS Group, Hamburg University, Germany

Motivation
MTC build instructions:
https://github.com/rhaschke/lecture/wiki/MoveIt-Task-Constructor

Objectives

• Definition + Planning of non-trivial manipulation sequences

• Modular

• Customizable

• Multiple arms/hands (cf. Felix‘ talk)

• Cost-ranking of alternative solutions

• Understandable failure cases (cf. Felix‘ UX remarks)

• Combine various planners (cf. Pilz‘ talk)

• Replace MoveIt‘s manipulation pipeline

• Limited to single-arm pick-and-place

• No introspection

• No Symbolic Task Planning

• Assuming task structure is known

• Planning on level of alternative solution paths

• Pipeline composed from Stages

• Each stage connects a start to an end InterfaceState
via 1...n SubSolutions

Overview

• Pipeline composed from Stages

• Each stage connects a start to an end InterfaceState
via 1...n SubSolutions

Overview

• Pipeline composed from Stages

• Each stage connects a start to an end InterfaceState
via 1...n SubSolutions

• Stages interface each other via list of InterfaceStates

• Solution = fully-connected path through pipeline

Overview

• Pipeline composed from Stages

• Each stage connects a start to an end InterfaceState
via 1...n SubSolutions

• Stages interface each other via list of InterfaceStates

• Solution = fully-connected path through pipeline

• InterfaceState

• MoveIt’s PlanningScene

• Properties, e.g.

• grasp type

• end effector to use for grasping

Overview

• SerialContainer

• Sequential chaining of sub tasks

• ParallelContainer

• Alternatives

• Consider all solutions of children

• Fallback

• Consider children one by one

• Merger

• Combine solutions of children for parallel execution

• Example: arm approaching + hand opening

• Requires extra feasibility check!

• Wrapper

• Filter / duplicate / modify solutions

Hierarchical Structuring

InterfaceStateLists: Implementation Details
● Each stage has its own starts/ends interface

if reading from there
● Not instantiating the interface, indicates that

the stage is not reading from that direction

input_

output_ends_

starts_

InterfaceStateLists: Implementation Details
● Each stage has its own starts/ends interface

if reading from there
● Not instantiating the interface, indicates that

the stage is not reading from that direction
● The pointers prev_ends_ and next_starts_

reference to the ends / starts interface of
the previous / next stage. They indicate
whether the stage is writing in that direction input_

output_ends_

starts_

next_starts_

prev_ends_

Stage Types: SerialContainer

ends_

starts_

next_starts_

prev_ends_

pending_backward_

pending_forward_

● serially chain several stages
● a solution is any path connecting

any start to any end state
● container interface

– starts_ / ends_: incoming from
prev / next sibling stage
forwarded to first / last child

Stage Types: SerialContainer

ends_

starts_

next_starts_

prev_ends_

pending_backward_

pending_forward_

● serially chain several stages
● a solution is any path connecting

any start to any end state
● container interface

– starts_ / ends_: incoming from
prev / next sibling stage
forwarded to first / last child

– onNewSolution: lift full solution(s)
to external InterfaceList

Semantic Stage Types

• Planning proceeds non-linearly:

• generators: seed for planning

• propagation: advance partial solutions

• connectors: connect partial solutions

• Example: Pick-n-Place with Handover

↕ current state
∞ connect
↕ pick with right hand
↓ move to handover pose
∞ connect
↕ pick with left hand
↓ move to place

Semantic Stage Types

• Planning proceeds non-linearly:

• generators: seed for planning

• propagation: advance partial solutions

• connectors: connect partial solutions

• Example: Pick-n-Place with Handover

↕ current state
∞ connect
↕ pick with right hand
↓ move to handover pose
∞ connect
↕ pick with left hand
↓ move to place

Semantic Stage Types

• Planning proceeds non-linearly:

• generators: seed for planning

• propagation: advance partial solutions

• connectors: connect partial solutions

• Example: Pick-n-Place with Handover

↕ current state
∞ connect
↕ pick with right hand
↓ move to handover pose
∞ connect
↕ pick with left hand
↓ move to place

Semantic Stage Types

• Planning proceeds non-linearly:

• generators: seed for planning

• propagation: advance partial solutions

• connectors: connect partial solutions

• Example: Pick-n-Place with Handover

↕ current state
∞ connect
↕ pick with right hand
↓ move to handover pose
∞ connect
↕ pick with left hand
↓ move to place

Stage Types by Interface
● Type determined by what is read from / written to interfaces

● Generator
– No reading, Write to both interfaces
– Examples: CurrentState, FixedState, GraspGenerator
–

● Propagator
– Read from one, write to opposite interface
– Examples: Approach, Lift

● Connector
– Read both interfaces
– Combinatorial explosion
– Check compatibility of states

Available Primitive Stages
● Generators

– Fetch current Planning Scene from move_group
– Cartesian pose generator / sampler
– ComputeIK
– Simple grasp generator

● Propagators
– MoveTo: plan towards absolute goal
– MoveRelative: plan relative motion
– Manipulate Planning Scene

● Attach / Detach objects
● Modify ACM

● Connect

Connect
● Connect 2 InterfaceStates via planning
● Might involve multiple planning groups

– Arm(s)
– Hand(s)

● Approach:
– List all groups with corresponding planners
– Plan for groups in given sequence
– Try to merge trajectories for parallel execution

Planners
● Individual stages can employ different planners
● MoveIt‘s PipelinePlanner
● OMPL
● STOMP
● CHOMP
● …
● Straight-line Cartesian path
● Straight-line Joint-space path

Basic Example: C++
Task task;
task.add(std::make_unique<stages::CurrentState>());

auto cartesian = std::make_shared<solvers::CartesianPath>();
// Cartesian motion along a vector in world
auto move = std::make_unique<stages::MoveRelative>("x",cartesian);
move->setGroup(„panda_arm“);
geometry_msgs::Vector3Stamped direction;
direction.header.frame_id = "world";
direction.vector.x = 0.2;
move->setDirection(direction);
task.add(std::move(move));
…

$ roslaunch moveit_task_constructor_demo demo.launch &
$ rosrun moveit_task_constructor_demo cartesian

…
// create an arbitrary twist motion relative to current pose
move = std::make_unique<stages::MoveRelative>("z",cartesian);
move->setGroup(„panda_arm“);
geometry_msgs::TwistStamped twist;
direction.header.frame_id = "world";
twist.twist.angular.z = M_PI / 4.;
move->setDirection(twist);
task.add(std::move(move));
…

Basic Example: C++

$ roslaunch moveit_task_constructor_demo demo.launch &
$ rosrun moveit_task_constructor_demo cartesian

…
// move from reached state back to the original state
Connect::GroupPlannerVector planners = {{„panda_arm“, cartesian}};
auto connect = std::make_unique<Connect>("connect", planners);
task.add(std::move(connect));

// final state is original state again
task.add(std::make_unique<CurrentState>());
…

Basic Example: C++

$ roslaunch moveit_task_constructor_demo demo.launch &
$ rosrun moveit_task_constructor_demo cartesian

…
// move from reached state back to the original state
auto ji = std::make_shared<solvers::JointInterpolationPlanner>();
Connect::GroupPlannerVector planners = {{„panda_arm“, ji}};
auto connect = std::make_unique<Connect>("connect", planners);
task.add(std::move(connect));

// final state is original state again
task.add(std::make_unique<CurrentState>());
…

Basic Example: C++

$ roslaunch moveit_task_constructor_demo demo.launch &
$ rosrun moveit_task_constructor_demo cartesian

task = core.Task()

start from current robot state
task.add(stages.CurrentState("current state"))

Cartesian motion along x
move = stages.MoveRelative("x +0.2", core.CartesianPath())
move.group = group

dir = Vector3Stamped(header=Header(frame_id = "world"),
vector=Vector3(0.2,0,0))

move.setDirection(dir)

task.add(move)

…

Basic Example: Python

$ roslaunch moveit_task_constructor_demo demo.launch &
$ rosrun moveit_task_constructor_demo cartesian.py

task = core.Task()

start from current robot state
task.add(stages.CurrentState("current state"))

Cartesian motion along x
move = stages.MoveRelative("x +0.2", core.CartesianPath())
move.group = group

dir = Vector3Stamped(header=Header(frame_id = "world"),
vector=Vector3(0.2,0,0))

move.setDirection(dir)

task.add(move)

…

Basic Example: Python

$ roslaunch moveit_task_constructor_demo demo.launch &
$ rosrun moveit_task_constructor_demo cartesian.py

C++

Python

serialization/deserialization

serialized string

serialization/deserialization

…

moveTo named posture
move = stages.MoveTo("moveTo ready", cartesian)
move.group = group
move.setGoal("ready")
task.add(move)

if task.plan():
 task.publish(task.solutions[0])

Basic Example: Python

$ roslaunch moveit_task_constructor_demo demo.launch &
$ rosrun moveit_task_constructor_demo cartesian.py

Containers as Wrappers for reusable sub tasks
● Combine stages into reusable sub tasks
● Examples: Pick / Place or Grasp / Release

Pick
● Approach
● Grasp
● Lift

Grasp
● ComputeIK

● GraspProvider
● Allow Object Collision
● Close Gripper
● Attach Object

Place
● Place
● UnGrasp
● Retract

UnGrasp
● ComputeIK

● PlaceProvider
● Detach Object
● Open Gripper
● Forbid Object Collision

Property Inheritance
● Need a method to derive stage properties

– from parent
– from passed-in solution

● Explicit property handling
– declared with name and type
– explicit inheritance or forwarding

● Property::configureInitFrom(source,
const InitializerFunction& f);

● Property::configureInitFrom(source, other_name);

● PropertyMap::configureInitFrom(source, names);

● source = PARENT | INTERFACE

$ roslaunch moveit_task_constructor_demo demo.launch &
$ rosrun moveit_task_constructor_demo modular

↕ current state
∞ connect
↕ pick
∞ connect
↕ place

MonitoringGenerator
● Generator might need input from a remote stage
● Grasp/Place an object at the current position
● MonitoringGenerators

hook into solutions of another stage

Stage Type Hierarchy
Stage

Generator Propagating
EitherWay

SerialContainer

ContainerBase

ParallelContainer
Base

Propagating
Forward

ComputeBase

ComputeIK

Connect

Propagating
Backward

MoveTo MoveRelative

Monitoring
Generator

Generate
Pose

PickPlace
Base

SimpleGrasp
Base

Alternatives

Fallbacks

Merger

Wrapper
Base

Predicate
Filter

Providing Custom Stages
class MyStage : public PropagatingForward {
public:
 MyStage(string name);

 void computeForward(const InterfaceState& from) override
 {
 ...
 SubTrajectory solution(trajectory, cost, comment);
 solution.markers().push_back(marker);
 sendForward(from, move(end_scene), move(solution));
 };
};

Outlook: Envisioned Features
● Drop-In replacement for MoveIt‘s Pick+Place capability
● Interactive GUI

– Configure + validate task pipeline in rviz
● Save / load YAML
● C++ / python code generation

● Execution Handling
– Premature execution of planned sub tasks
– Choose controllers for sub tasks (force control, servoing)

● Failure handling
● Replan from current situation
● Revert to previous stage

Scheduling
● Find „good“ solutions fast!

● Priority queues @ different levels
– InterfaceState: remember best solution only
– InterfaceStateList: sort by length and

accumulated cost of partial solution
– Stage scheduling (TODO)

● Interface type
● success rate
● estimated computation time

● Compute stages in parallel threads

Cost Functions
● Currently costs explicitly computed in stages
● Future: Provide set of cost functions to choose from

– accumulated amount of joint-space / Cartesian motion
– distance from preferred pose
– clearance to obstacles
– …

● Generic mechanism to set cost functions per stage
● Plugins?
● What are stage-specific useful defaults?

More Advanced Examples
● Pick + Place

● Bimodal Pick + Place
– Choose left or right arm based on costs

● Long-Distance Pick-and-Place with Handovers

https://github.com/ubi-agni/mtc_demos
● Pouring

https://github.com/TAMS-Group/mtc_pour

$ roslaunch moveit_task_constructor_demo demo.launch &
$ roslaunch moveit_task_constructor_demo pickplace.launch

https://github.com/ubi-agni/mtc_demos
https://github.com/TAMS-Group/mtc_pour

	Slide 1
	Motivation
	Objectives
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	Slide 8
	page6 (1)
	page6 (2)
	page7 (1)
	page7 (2)
	Semantic Stage Types (1)
	Semantic Stage Types (2)
	Semantic Stage Types (3)
	Semantic Stage Types (4)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	page17 (1)
	page17 (2)
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Providing Custom Stages
	Outlook: Envisioned Features
	Slide 34
	Slide 35
	Slide 36

