>Movelt2

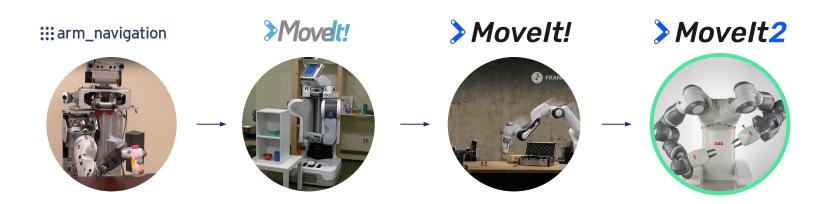
Realtime Motion Planning

ROS Industrial 2020 Annual Meeting

Dave Coleman, PhD CEO, PickNik Robotics O davetcoleman

Headquartered in

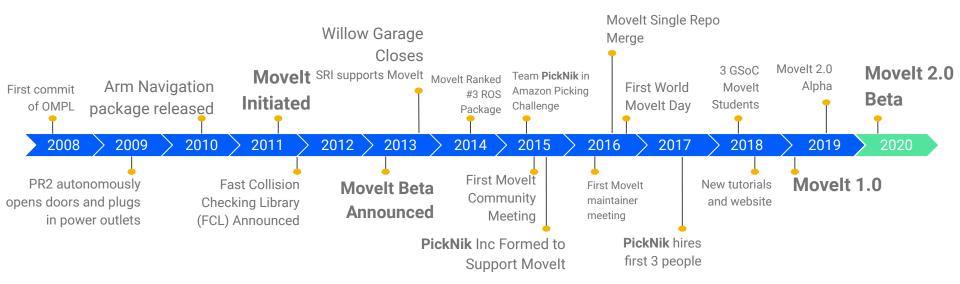
Boulder, Colorado


We are your partners in strategically developing custom robotics software, while de-risking open source usage.

Movelt: A Hardened Motion Planning Platform

Movelt Capabilities

- Motion Planning
 - Generate high-degree of freedom trajectories through cluttered environments and avoid local minimums
- Manipulation
 - \circ $\,$ Analyze and interact with your environment with grasp generation
- Inverse Kinematics
 - \circ $\,$ Solve for joint positions for a given pose, even in over-actuated arms
- Control
 - Execute time-parameterized joint trajectories to low level hardware controllers through common interfaces
- 3D Perception
 - \circ $\,$ Connect to depth sensors and point clouds with Octomaps $\,$
- Collision Checking
 - Avoid obstacles using geometric primitives, meshes, or point clouds


109,880	Unique users to moveit.ros.org in 2019
23,662	Downloads per month of moveit_core
542	Academic citations of Movelt
152	Robot types integrated to work with Movelt
4200	Members of Discourse, Movelt's Discussion Forum
509	Github users have starred the Movelt project
187	Github code contributors to Movelt
13	International locations participated in World Movelt Day 2018
310	In-person participants of World Movelt Day 2018

A Feature-Rich Ecosystem

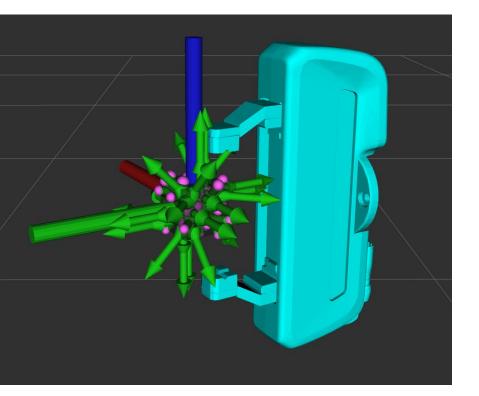
 Global Planners OMPL SBPL TrajOpt STOMP CHOMP 	 Cartesian Planners RobotState Descartes JogArm PilzIndustrial Motion 	Inverse Kinematics • KDL • IKFast • TrackIK • LMA • BioIK
 Grasping Libraries Movelt Grasps Grasp Pose Detection (GPD) Intel OpenVino GPD 	 Collision Checking Fast Collision Library (FCL) Bullet 	 Perception / Octomap Depth Images Point Clouds

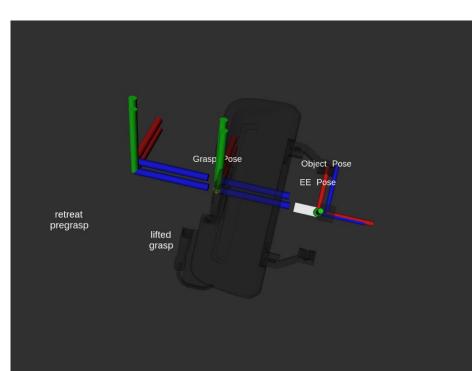
What's new in Movelt?

Key New Features In Movelt Ecosystem

- Movelt Task Constructor
 - Task Planning
 - Robert Haschke, Michael Görner
- Movelt Grasps
 - Geometric-based grasp generation
 - Mike Lautman, Dave Coleman
- Movelt Cpp
 - Advanced API for performance
 - Henning Kayser
- Movelt JogArm
 - Realtime teleoperation planner
 - Andy Zelenak

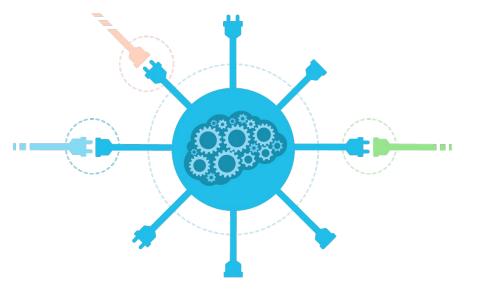
- Iterative Cubic Spline Algorithm
 - Smoother trajectory generation
 - Ken Anderson
- Time-Optimal Trajectory Parameterization
 - Follow path within bounds on accelerations & velocities
 - Michael Ferguson, Henning Kaiser
- Named Frames on Collision Objects
 - Subframes for placing objects
 - Felix von Drigalski


Movelt Task Constructor



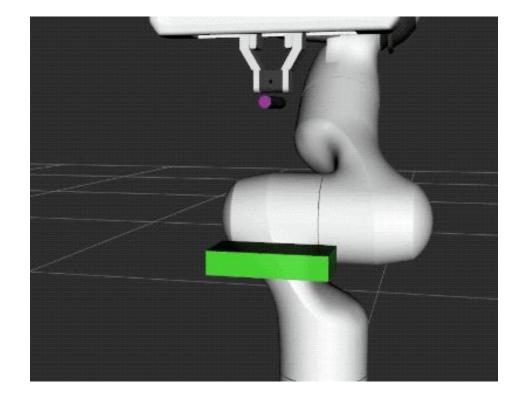
Displays	×	🔷 Motion Planning Tasks	
Global Options			
Global Status: Ok		Task Tree	
Srid		Name	× -
MarkerArray	✓	▼ Motion Planning Tasks	
🗸 Status: Ok		v Motion Planning Tasks	0
Marker Topic	/rviz_visua	▼ 1 applicability test	o
Queue Size	100	1 current state	0
Namespaces		J open hand 1	o
Trajectory		move to pick 13	0
PlanningScene		▼ 1 pick object 14	0
Motion Planning Tasks	✓	14 pproach object	2
		T grasp pose IK 101	4
		generate grasp pose 25	0
		allow collision (hand,object)	0
		L close hand 17	0
		+ L attach object 17	0
		allow collision (object, support) 17	0
		Lift object 17	0
		forbid collision (object,surface)	0
		move to place 10	0
		✓ ‡ place object 11	0
		f lower object 15	1
		▼ ‡ place pose IK 22	6
		‡ generate place pose 340	0
		open hand 17	0
		forbid collision (hand,object) 17	0
Add Duplicate Remove	Rename	detach object 17	0
	*	retreat after place 11	6 🕶
vizVisualToolsGui		Properties	

Movelt Grasps

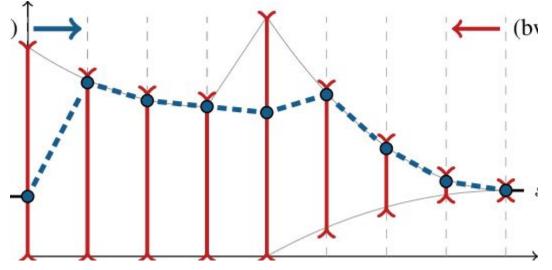


Movelt Cpp Interface

- Designed by Industry-requested
 needs
- Speeds up manipulation product development
- As simple as current MoveGroup
- Disables ROS 1 performance bottleneck
- Direct access to core components provided as needed
- Multi-robot support


Movelt JogArm

Named Frames on Collision Objects



Time Parameterization

- Iterative Cubic Spline Algorithm
 - Smoother trajectory generation
 - Ken Anderson

- Time-Optimal Trajectory Parameterization
 - Follow path within bounds on accelerations & velocities
 - Michael Ferguson, Henning Kaiser

ROS 2 & Realtime

Why ROS 2?

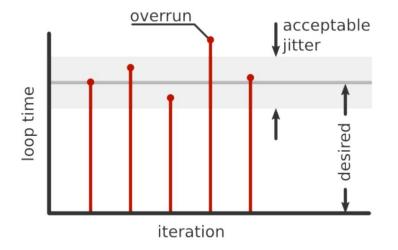
- Realtime support possible
- Multi-platform support: Linux, Windows, OSX
- Production-ready framework based on industry feedback of ROS 1
- DDS: open communication standard

ROS 2 & Realtime

Why care about realtime?

- Vital to many robotics systems, particularly safety and mission critical apps
 - Autonomous vehicles, spacecrafts, and industrial manufacturing.

2 primary types of Realtime:


- Hard realtime missing a deadline is considered a system failure
 - Safety- or mission-critical systems
 - Reactor, aircraft and spacecraft control
- **Soft realtime** missing a deadline has a cost, but is not catastrophic
 - Reduced quality of service
 - Audio / video streaming and playback

Realtime Computing

Determinism, not performance

- Correct computation guaranteed to be delivered within fixed time allotment
- Failure to respond is as bad as a wrong response

Applying Realtime: Best Practices

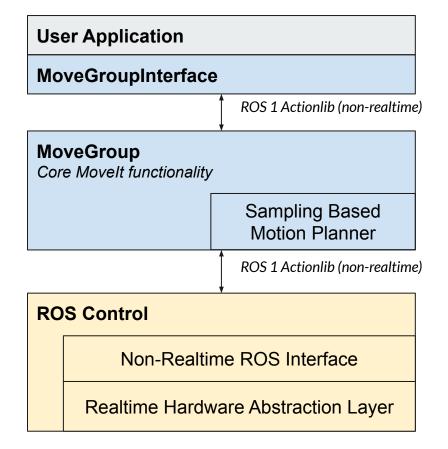
- Realtime Operating System (RTOS)
 - Linux + RT Preempt (soft realtime)
 - Xenomai (hard realtime)
- Zero memory copy message passing:
 - Shared memory between threads or processes
- Lock-free circular buffers
- Prioritize real-time threads
- Avoid system calls (memory allocations, printing to console, mutexes)

Note these techniques have largely been available in ROS 1, e.g. MoveltCpp.

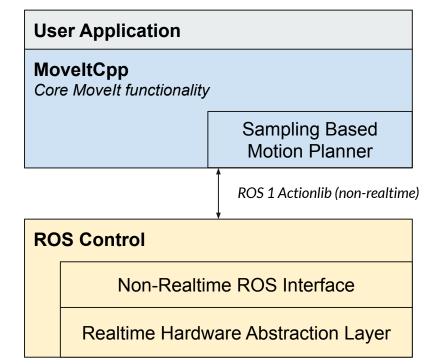
ROS 2 & Realtime

Types of Middleware Communication

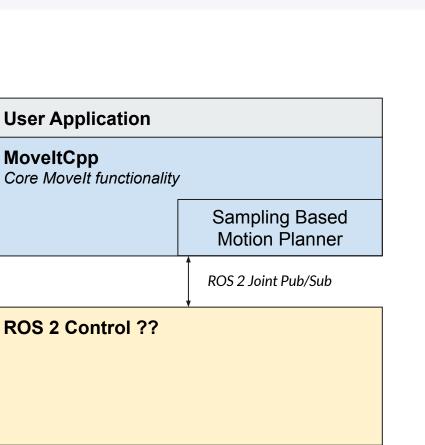
- Inter-process
 - DDS can deliver soft realtime comms
 - Customizable QoS, can be tuned for real-time use-case
- Intra-process (several options)
 - Efficient (zero-copy) shared pointer transport
 - Shared memory with read-only and write-only partition
 - Non-locking circular message queues
- Same-thread
 - No need for synchronization primitives. Simple, fast



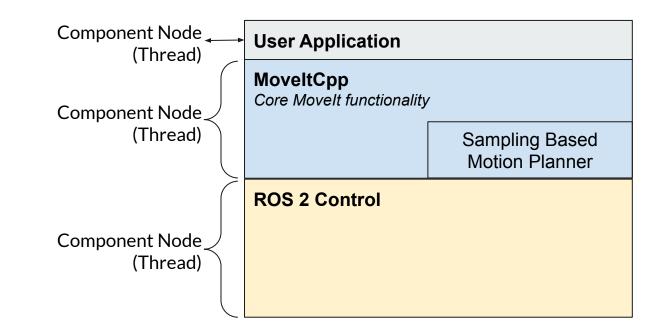
Realtime Motion Planning

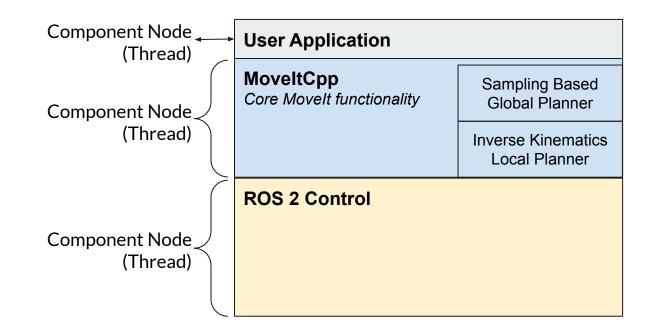

- Enables:
 - Closed loop, reactive control
 - Streaming joint commands (torques, velocities) to robot arms at high rates (e.g. >1000 Hz)
- Improves:
 - Reliability
 - Extended uptime

Movelt 1.0 Out of Box Approach



Movelt 1.0 New Advanced Approach with MoveltCpp


Movelt 2.0 Current Beta Implementation



Movelt 2.0 Proposed Implementation with ROS 2 Component Nodes

Movelt 2.0 Hybrid Motion Planning

ROS 2 & Realtime

Global vs Local Planning

Global Planning (assuming sampling)

- Pros:
 - Plan around complex obstacles
 - Avoid getting stuck in local minimum
 - Complete: will find solution if exists
- Cons:
 - Slower computation time
 - Not realtime
 - Not deterministic

Local Planning (assuming jacobian based)

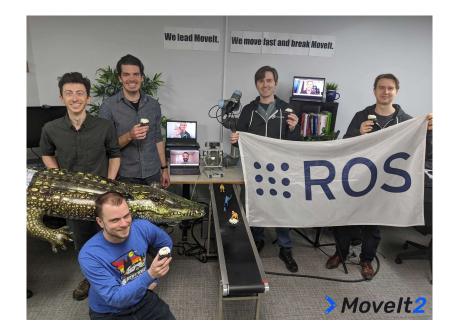
- Pros:
 - Fast / Reactive
 - Deterministic
 - Well suited for visual servoing
- Cons:
 - Gets stuck in local minimum
 - Fewer collision safety guarantees

Hybrid Planning

- Simultaneously plan globally and locally
- Plan at different speeds in separate thread:
 - Global planner (full collision checking): ~30Hz
 - Local Planner (IK-based, field-based): ~300Hz

Deterministic Planning

- Out of box / default planners return reliable paths
 - Improved support for OMPL, TrajOpt
- Further optimize or smooth motions
 - Default use TOTG, TOPP time parameterization
 - Post-processing optimization (STOMP, TrajOpt)
- Fully featured Cartesian Planner


Roadmap

Roadmap

Movelt 2.0 Releases

- Alpha
 - Released June 2019
 - ROS 2 Dashing Diademata
- Beta
 - Released February 2020
 - ROS 2 Eloquent Elusor

Milestone 1	Milestone 2	N
Straight Port to ROS 2	Realtime Support	
Fully migrate existing Movelt packages to ROS 2	Reactive, closed-loop control to sensor input	L
Wrap up Acutronic's work porting core Movelt functionality	Visual servoing, octomap updates	
Leverage ROS 2:	Preempt motion if new collision detected	L
Build system (ament), middleware, logging, parameters	Seperate global and local planner (hybrid planning)	
Cleanup Movelt 2 codebase	Global planner (full collision checking): 30hz	
VOIL	Local planner (IK-based, field-based): 300hz	C
YOU	Zero-memory copy integration to controllers (ros_control)	
HERE	Tighter integration to ros_control	
	Integrate pilz_industrial_motion	
	Movelt Survey Results	N
	91% most excited about ROS 2 realtime control	4
	55% reactive planning and closed loop control	
	48% better integration with lower level realtime control	
	48% planning with dynamics	
Future Milestones	20 5055 64 19	_
Determinism	Improved Interfaces / State Machines	
Out of box / default planners return reliable paths	Deprecate the Pick and Place pipeline	P

Fully support the Movelt Task Constructor

Similar to MoveGroup but without middleware

First class support of state machines

Non-ROS C++ API

Tune or replace OMPL, BIT*

Further optimize / smooth paths

Default use TOTG, TOPP time parameterization

Use post-processing optimization (STOMP, TrajOpt)

Fully featured Cartesian Planner

Like Descartes but better and fully integrated

Force-torque control

Milestone 3

Fully Leverage ROS 2

Lifecycle management of Movelt nodes Deterministic startup, reset, & shutdown sequences Leverage ROS2 component nodes Ability to run Movelt as single or multi-process Replace pluginlib with components Cleanup API More generic and standalone interfaces

Movelt Survey Results 47% excited about component nodes

Machine Learning

Neural-network based motion planning - new plugins General near-optimal heuristics for path planning e.g. MPNet

Roadmap

Progress on Roadmap

1. Finish migration of Movelt **1** packages

- 2. Document how to use ROS1 bridges for legacy support
- 3. Merge and simplify ecosystem repositories
- 4. Address realtime support
- 5. Improve deterministic planning

Getting Involved

Getting Involved

Upcoming Events

Google Summer of Code

Getting Involved

Contributing to Movelt

https://moveit.ros.org/documentation/contributing/

Many approaches:

- Adding New Features
- Helping with Movelt 2 Port
- Financial contributions via code sprints and grants
- Enhancing Documentation
- Reporting & Fixing Bugs

Thanks!

Dave Coleman dave@picknik.ai

PickNik Robotics (+1) 720 513 2221 1942 Broadway, Suite 314 Boulder, Colorado 80302 ♥ @picknikrobotics